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LETTER TO THE EDITOR 

Fermi liquid model for Kondo lattice systems 

P K Misrat and Joseph Callaway$ 
t Department of Physics, Mesa State College, Grand Junction, CO 81506, USA 
$ Department of Physics, Louisiana State University, Baton Rouge, LA 70803-4001, 
USA 

Received 10 January 1989 

Abstract. We present a Fermi liquid theory for Kondo lattice systems in which spin-orbit 
effects are specifically included. We assume the ground state of the Kondo lattice to be 
single-ion Kondo singlets built coherently into the lattice. We explain the advantage of our 
model over that of Zou and Anderson. 

It is well known that the ground state of a Kondo ion is a singlet, and its low-energy 
behviour is strongly constrained by the Friedel sum rule. Renormalisation group analysis 
and exact solution (Nozieres 1974, 1978, Nozieres and Blandin 1980, Wilson 1975, 
Andrei 1980, Andrei et a1 1983, Tsvelick and Wiegmann (1983) suggest that a renor- 
malised resonant level (RL) is a good description of the low-energy behaviour of such a 
system. The RL, which is characterised by an effective width A* and an effective f level 
position E: , describes a renormalised f state with 2J  + 1 = N scattering channels, each 
with a specified azimuthal quantum number (Haldane 1978) mi. In the Kondo regime, 
A* =c D exp( -nl Ef l /NA)  for - Ef 2=- N A  where A and Ef  are the bare hybridisation 
width and f level position and 2 0  is the band width. 

In a Kondo lattice, the energy scale for lattice coherence effects is smaller than the 
Kondo temperature, and the contribution to the free energy from inter-site coherence 
effects are of higher order in l/Nthan intra-site effects (Ramakrishnan 1982, Kuramoto 
1983, Grewe 1983, Coleman 1983). In view of the above, Razahfimandimby et a1 (1984) 
and d’Ambrumeni1 and Fulde (1985) have assumed that, for a Kondo lattice, the 
scattering at each Kondo site can be described by a phase shift 

= -k ( E  - p ) / T K  + Q ) u u ‘ ~ ~ u ’ ( ~ ’ )  (1) 
U’&’ 

where v and v ’  denote the spin-orbital states of the localised f level, TK is the Kondo 
temperature and 6 ( p )  is fixed by the valence of the Kondo ion and by using the Friedel 
sum rule. Requiring that the scattering for the lattice at T = 0 (sn,, = 0) is coherent 
leads to the KKRZ equations (Ziman 1965) whose solutions near ,U, EK, correspond to 
the energies of single quasi-particle excitations. Two quasi-particles interact when one 
‘senses’ the virtual polarisation of a Kondo ion induced by another. This interaction is 
characterised by the parameters Q ) , , ~ ~ .  By using the well known results from the theory 
of transition metals due to Heine (1967), Pettifor (1972) and Razafimandimby et a1 
(1984) cast their results into a hybridisation model. However, they made the drastic 
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assumption that the additional phase shift caused by the Kondo ions is of s electrons 
instead off electrons, thereby neglecting spin-orbit effects which are very important for 
heavy fermions. 

In this Letter, we present a Fermi liquid theory for Kondo lattice systems in which 
spin-orbit effects are specifically included. We assume the ground state of the Kondo 
lattice to be single-ion Kondo singlets built coherently into the lattice. However, this 
assumption is not always justified. For example, in CeB,, the RKKY interaction is thought 
to dominate the single-ion effects forcing CeB6into a magnetic ground state (Aarts 1984, 
Rossat-Mignod et a1 1981). Thus we specifically refer to CeCu2Si2 or CeA13 when we 
discuss a Kondo lattice. In this Letter we outline the formulation of our theory. We shall 
report the results of our calculation of the effective magnetic moment and the Wilson 
ratio of Kondo lattice systems in a future paper. We have also explained the non-linear 
relation between Knight shift and magnetic susceptibility of a Kondo lattice by using our 
model, a preliminary version of which has recently been presented (Misra and Callaway 
1986) (the details will be published elsewhere). Subsequently Zou and Anderson (1986) 
have also formulated a Fermi liquid model for the formation of heavy-fermion bands by 
using a similar technique. They have shown that only one specific linear combination of 
the six local f states can hybridise with a conduction state of given k and spin and 
hence the magnetic moments of heavy fermions are sharply quenched. Their results for 
effective magnetic moments are in fair agreement with experimental results. However, 
our theory is more general than that of Zou and Anderson (1986) and has several 
advantages which we shall discuss later when we compare the two models. 

In cerium systems, only the 1 = 3 phase shift is important. The spin-orbit splitting 
between J = $ and J = 4 is much larger than A*,  and therefore & ( E )  is large in t k  J = $ 
state. Ignoring the crystal-field effects, the phase shift around the Fermi energy is of the 
form tj3(&) 2: tan-'(A*/(E? - E ) ) .  The position of E,* is determined by the Friedel sum 
rule, N a 3 ( p ) / n  = nf. The phase shifts are assumed to be caused by a scattering potential 
which is non-zero within a muffin tin of radius R. It is easy to show, by using a procedure 
similar to the KKRZ method (Ziman 1965) (including spin-orbit effects), that the band 
structure is obtained from 

where 

Here, k, = k + G,, K = (2mE)l/*, 51 is the volume of the unit cell, s is the spin index, the 
Care Clebsch-Gordon coefficients, det/lU(/ means determinant of matrix U. In addition 

andjl(x) and nl(x)  are the spherical Bessel functions. We redefine 

Ef = E ?  - (n3(KR) / j3(KR))A* (4) 
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It may be noted that I' a A*/(& - E )  and is strongly energy dependent. In addition, 
there is a singularity at resonance which can be tamed by a transformation in which RLS 
are added as basis states. 

We construct Bloch states 

and 

Here q A ( r )  is the radial part of the exact solution of the Schrodinger equation within one 
Wigner-Seitz cell for a given scattering potential with eigenvalue E but for r > R ,  the q 
decay into plane wave states. It can be easily shown that 

One can transform the determinant in equation (2) by using the states in equation (5) 
and the integral formula for phase shift by adapting a technique used originally by Heine 
(1967) for transition metals. After some algebra, one obtains 

Here Wkns,,,k,,sl,f is the pseudopotential, s is spin index, U is a matrix with a non-vanishing 
determinant, and the hybridisation form factors y&:ltSs" and y&71',s,, are given by 

I is an identity matrix and U is the Pauli spin matrix. 
The hybridisation potential is obtained by multiplying the form factor by the structure 

factor. It may be noted that the hybridisation potential includes spin-orbit coupling and 
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mixes the dispersionless resonance states with extended states of all Brillouin zones. 
In fact, equation (9) can be considered as the secular equations of a hybridisation 
Hamiltonian of the form 

Here &,(IC) is the energy of the nth Brillouin zone obtained by diagonalising the Ham- 
iltonian containing the kinetic energy term and the corresponding spin-orbit pseu- 
dopotential terms (including I = 31, Y&,kns '  are the hybridisation potentials derived by 
us and c k m ( c l m ) ;  fksJ(fiyJ) are the usual fermion operators destroying (creating) an 
extended state and a localised state respectively. We note that the energy Ef j  is disper- 
sionless but the hybridisation term mixes the localised states with extended states of all 
Brillouin zones. The Hamiltonian (13) can be transformed into one with one extended 
band only by a projection method suggested by Heine (1967). If this procedure is 
adopted, one obtains the hybridisation of one conduction band with localised states 
which have dispersion in their energy. This characteristic dispersion of the resonance 
levels is a consequence of the reduction of the hybridisation Hamiltonian to the lowest 
Brillouin zone. This procedure would lead us to the derivation of a periodic Anderson 
Hamiltonian in which spin-orbit effects are explicitly included. 

As noted earlier, Zou and Anderson (1986) have also formulated a Fermi liquid 
model for the formation of heavy-fermion bands by using a similar technique. However, 
our model is more general and has the following advantages. 

(i) We have calculated the hybridisation potentials for both J = Q and J = i while 
their model has only theJ  = Q hybridisation potential. Therefore our model can be easily 
extended to include crystal-field effects. 

(ii) Our resonance states are Bloch functions, the formulation of which is essential 
for calculation of magnetic susceptibility (Misra et a1 1982), Knight shift (Tripathy et a1 
1982) and other transport properties of heavy fermions. 

(iii) It is easier to handle our model Hamiltonian since the creation and annihilation 
operators for both resonance and extended states refer to Bloch states. 

(iv) The band-structure effects in our calculations are included in a pseudopotential 
formalism while their formulation essentially accounts for hybridisation between one 
plane wave and a localised state, which is far from realistic. 

We have used degenerate perturbation theory to construct Bloch functions which 
are eigenfunctions of the Hamiltonian described in equation (13). We have used these 
functions to evaluate the momentum and spin matrix elements which occur in the general 
expressions for magnetic susceptibility (x,) of Misra et aZ(1982) and for Knight shift (K,) 
of Tripathy et a1 (1982). Finally we obtain 

and 
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Here a,(k), bn(k) and d k )  are complicated functions of k and the other symbols have 
their usual meanings. It is evident from equation (14) and (15) that K, is not directly 
proportional to xs. The details of our calculations will be published elsewhere. 

To summarise, we have formulated a Fermi liquid model for Kondo lattice systems 
which includes spin-orbit effects. We have explained the advantages of our model over 
that of Zou and Anderson (1986). We have calculated the Knight shift ( Ks)  and magnetic 
susceptibility (x,) by using our model and shown that K, is not proportional to xs, a result 
which is well known for Kondo-lattice systems. 

This research was supported by NSF Grant No DMR-8810249. 
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